Multiple adaptive mechanisms affect asparagine synthetase substrate availability in asparaginase-resistant MOLT-4 human leukaemia cells.
نویسندگان
چکیده
Childhood acute lymphoblastic leukaemia is treated by combination chemotherapy with a number of drugs, almost always including the enzyme L-asparaginase (ASNase). Although the initial remission rate is quite high, relapse and associated drug resistance remain a problem. In vitro studies have demonstrated an adaptive increase in asparagine synthetase (AS) expression in ASNase-resistant cells, which is believed to permit ASNase-resistant human leukaemia cells to survive in vivo. The present results, obtained with ASNase-sensitive and -resistant human MOLT-4 leukaemia cell lines, illustrate that several other adaptive processes occur to provide sufficient amounts of the AS substrates, aspartate and glutamine, required to support this increased enzymic activity. In both cell populations, aspartate is derived almost exclusively from intracellular sources, whereas the necessary glutamine arises from both intracellular and extracellular sources. Transport of glutamine into ASNase-resistant cells is significantly enhanced compared with the parental cells, whereas amino acid efflux (e.g. asparagine) is reduced. Most of the adaptive change for the amino acid transporters, Systems A, ASC and L, is rapidly (12 h) reversed following ASNase removal. The enzymic activity of glutamine synthetase is also enhanced in ASNase-resistant cells by a post-transcriptional mechanism. The results demonstrate that there are several sites of metabolic adaptation in ASNase-treated leukaemia cells that serve to promote the replenishment of both glutamine and asparagine.
منابع مشابه
Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells.
Childhood acute lymphoblastic leukaemia (ALL) is treated by combination chemotherapy with a number of drugs, always including the enzyme L-asparaginase (ASNase). Although the initial remission rate is quite high, relapse and associated drug resistance are a significant problem. In vitro studies have demonstrated increased asparagine synthetase (AS) expression in ASNase-resistant cells, which ha...
متن کاملAn inhibitor of human asparagine synthetase suppresses proliferation of an L-asparaginase-resistant leukemia cell line.
Drug resistance in lymphoblastic and myeloblastic leukemia cells is poorly understood, with several lines of evidence suggesting that resistance can be correlated with upregulation of human asparagine synthetase (hASNS) expression, although this hypothesis is controversial. New tools are needed to investigate this clinically important question, including potent hASNS inhibitors. In vitro experi...
متن کاملL-Asparagine synthetase in serum as a marker for neoplasia.
L-Asparagine synthetase appears in serum approximately 7 days after the s.c. implantation of 1 X 10(5) cells of Leukemia 5178Y/AR (resistant to L-asparaginase) and increases in activity as the neoplasm grows and metastasizes. The principal source of the enzyme is the primary tumor. After intravranial inoculation of tumor, the rate of leakage of the enzyme is more pronounced than when the subcut...
متن کاملStudies on the Mechanism of Tumor Inhibition by L-asparaginase
L-asparaginases of agouti serum and Escherichia coli cause a profound lowering in the level of free asparagine in the blood of treated mice and also in the tissues. During treatment, normal tissues and resistant 6C3HED lymphomas survive unharmed with intracellular asparagine levels which are critically low for sensitive lymphomas. An explanation for this contrast between the two types of lympho...
متن کاملInhibition of glutamine synthetase triggers apoptosis in asparaginase-resistant cells.
The resistance to L-asparaginase (ASNase) has been associated to the overexpression of asparagine synthetase (AS), although the role played by other metabolic adaptations has not been yet defined. Both in ASNase-sensitive Jensen rat sarcoma cells and in ARJ cells, their ASNase-resistant counterparts endowed with a five-fold increased AS activity, ASNase treatment rapidly depletes intracellular ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 358 Pt 1 شماره
صفحات -
تاریخ انتشار 2001